Evidence for K+-dependent HCO3- utilization in the marine diatom Phaeodactylum tricornutum.

نویسندگان

  • Xiongwen Chen
  • C E Qiu
  • J Z Shao
چکیده

Photosynthetic utilization of inorganic carbon in the marine diatom Phaeodactylum tricornutum was investigated by the pH drift experiment, measurement of K(1/2) values of dissolved inorganic carbon (DIC) with pH change, and comparison of the rate of photosynthesis with the rate of the theoretical CO(2) formation from uncatalyzed HCO(3)(-) conversion in the medium. The higher pH compensation point (10.3) and insensitivity of the photosynthetic rate to acetazolamide indicate that the alga has good capacity for direct HCO(3)(-) utilization. The photosynthetic rate reached 150 times the theoretical CO(2) supply rate at 100 micromol L(-1) DIC (pH 9.0) in the presence of 10 mmol L(-1) K(+) and 46 times that in the absence of K(+), indicating that for pH 9.4-grown P. tricornutum, HCO(3)(-) in the medium is taken up through K(+)-dependent and -independent HCO(3)(-) transporters. The K(1/2) (CO(2)) values at pH 8.2 were about 4 times higher than those at pH 9.0, whereas the K(1/2) (HCO(3)(-)) values at pH 8.2 were slightly lower than those at pH 9.0 whether without or with K(+), providing further evidence for the presence of the two HCO(3)(-) transport patterns in this alga. Photosynthetic rate and affinity for HCO(3)(-) in the presence of K(+), respectively, were about 2- and 7-fold higher than those in the absence of K(+), indicating that K(+)-dependent HCO(3)(-) transport is a predominant pattern of HCO(3)(-) cellular uptake in low DIC concentration. However, as P. tricornutum was cultured at pH 7.2 or 8.0, photosynthetic affinities to HCO(3)(-) were not affected by K(+), implying that K(+)-dependent HCO(3)(-) transport is induced when P. tricornutum is cultured at high alkaline pH.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physiological and biochemical responses of a marine diatom Phaeodactylum tricornutum exposed to 1-octyl-3-methylimidazolium bromide

The marine diatom Phaeodactylum tricornutum is an important basal resource in the marine food chain and is used as a standard test organism in toxicological studies. In this study, in vivo experiments were performed to analyze the effects of 1-octyl-3-methylimidazolium bromide ([C8mim]Br) on the growth, photosynthetic activity, and antioxidant enzymes of P. tricornutum using 96 h growth tests i...

متن کامل

Diatom-Specific Oligosaccharide and Polysaccharide Structures Help to Unravel Biosynthetic Capabilities in Diatoms

Diatoms are marine organisms that represent one of the most important sources of biomass in the ocean, accounting for about 40% of marine primary production, and in the biosphere, contributing up to 20% of global CO₂ fixation. There has been a recent surge in developing the use of diatoms as a source of bioactive compounds in the food and cosmetic industries. In addition, the potential of diato...

متن کامل

Identification of the UMP synthase gene by establishment of uracil auxotrophic mutants and the phenotypic complementation system in the marine diatom Phaeodactylum tricornutum.

Uridine-5'-monophosphate synthase (UMPS), the critical step of the de novo pyrimidine biosynthesis pathway, which is a housekeeping plastid process in higher plants, was investigated in a marine diatom, the most crucial primary producer in the marine environment. A mutagenesis using an alkylation agent, N-ethyl-N-nitrosourea, was carried out to the marine diatom Phaeodactylum tricornutum. Cells...

متن کامل

Integrated Regulatory and Metabolic Networks of the Marine Diatom Phaeodactylum tricornutum Predict the Response to Rising CO2 Levels

Diatoms are eukaryotic microalgae that are responsible for up to 40% of the ocean's primary productivity. How diatoms respond to environmental perturbations such as elevated carbon concentrations in the atmosphere is currently poorly understood. We developed a transcriptional regulatory network based on various transcriptome sequencing expression libraries for different environmental responses ...

متن کامل

Apoptosis-inducing galactolipids from a cultured marine diatom, Phaeodactylum tricornutum.

Two monogalactosyl diacylglycerols, 1 and 2, were isolated from the marine diatom Phaeodactylum tricornutum, using the patented ApopScreen cell-based screen for apoptosis-inducing, potential anticancer compounds. The molecular structures of the galactolipids were determined using a combination of NMR, mass spectrometry, and chemical degradation. The bioactivities were confirmed using a specific...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 141 2  شماره 

صفحات  -

تاریخ انتشار 2006